- **1 a** A and C (SAS)
 - **b** All of them (AAS)
 - c A and B (SSS)
- 2 a $\triangle ABC \equiv \triangle CDA$ (SSS)
 - **b** $\triangle CBA \equiv \triangle CDE$ (SAS)
 - c $\triangle CAD \equiv \triangle CAB$ (SAS)
 - **d** $\triangle ADC \equiv \triangle CBA$ (RHS)
 - e $\triangle DAB \equiv \triangle DCB$ (SSS)
 - **f** $\triangle DAB \equiv \triangle DBC$ (SAS)

3

Let AM be the bisector of $\angle CAB$.

Then

AC = AB (Definition of isosceles)

 $\angle CAM = \angle BAM$ (Construction)

AM = AM (Common)

 $\triangle ACM \equiv \triangle ABM \text{ (SAS)}$

 $\therefore \angle ACM = \angle ABM$

That is $\angle ACB = \angle ABC$

4

Let AM be the bisector of $\angle CAB$. Then $\angle ACM = \angle ABM$ (Given)

$$\angle CAM = \angle ABM$$
 (Given)
 $\angle CAM = \angle BAM$ (Construction)
 $AM = AM$ (Common)
 $\triangle ACM \equiv \triangle ABM$ (AAS)

AC = AB

B

$$2\alpha + 2\beta = 360^{\circ}$$
 (Angle sum of quadrilateral) $\therefore \alpha + \beta = 180^{\circ}$ Hence, cointerior angles are supplementary.

Therefore, $AB \parallel DC$

6 a
$$a = b = c = d = 60^{\circ}$$

b

5

$$\angle CB0 = \angle BOA = 60^{\circ} \therefore BC \parallel AE$$
 (alternate angles equal) Similarly $BE \parallel BA$

7 a
$$a=108^\circ$$
, $b=36^\circ$, $c=72^\circ$, $d=36^\circ$, $e=36^\circ$, $f=36^\circ$

b

 $c^{\circ}+d^{\circ}=108^{\circ}$ and $e^{\circ}+f^{\circ}=72^{\circ}$

 $\therefore BD \parallel AE$ (co-interior angles supplementary)

 $b^{\circ} + e^{\circ} = 72^{\circ}$ and $a^{\circ} = 108^{\circ}$

 $\therefore BE \parallel CD$ (co-interior angles supplementary)

8 a

First prove opposite sides are equal.

ABCD is a parallelogram, $AD \parallel BC$ and $AB \parallel DC$ Join diagonal AC

In $\triangle ABC$ and $\triangle CDA$

 $\angle BAC = \angle DCA$ (alternate angles, $AB \parallel DC$)

 $\angle BCA = \angle DAC$ (alternate angles, $AD \parallel$ to BC

AC = CA (common)

 $\therefore \triangle ABC \equiv \triangle CDA \text{ (AAS)}$

 $\therefore AB = CD \text{ and } AD = BC$

To prove opposite angles are equal.

Let $\angle DAC = \alpha$ and $\angle ABC = \beta$

 $\alpha + \beta = 180^{\circ}$ (co-interior angles, $AD \parallel BC$)

 $\therefore \angle ADC = \beta$ (co-interior angles, $AB \parallel DC$)

 $\therefore \angle BCD = \alpha$ (co-interior angles, $AB \parallel DC$)

b

Join diagonal AC

In $\triangle ABC$ and $\triangle CDA$

AD = CB (opposite sides equal)

AB = CD (opposite sides equal)

AC = CA (common)

 $\therefore \triangle ABC \equiv \triangle CDA \text{ (SSS)}$

 $\therefore \angle BAC = \angle DCA$

 $\therefore AB \parallel DC$ (alternate angles equal

Furthermore,

$$\therefore \angle DAC = \angle BCA$$

 $\therefore AD \parallel BC$ (alternate angles equal

C

From the diagram,

 $2\alpha + 2\beta = 360^{\circ}$ (angle sum of quadilateral)

$$\therefore \alpha + \beta = 180^{\circ}$$

Co-interior angles are supplementary.

 $\therefore AB \parallel DC$ and $AD \parallel BC$

d

In $\triangle ABD$ and $\triangle CDB$

$$AB = DC$$
 (given

$$\angle ABD = \angle CDB$$
 (alternate angles

$$BD = DB$$
 (common)

$$\therefore \triangle ABD \equiv \triangle CDB \text{ (SAS)}$$

$$\therefore AD = BC$$

ABCD is a parallelogram

9

APCQ is a parallelogram.

In $\triangle ADQ$ and $\triangle BPC$

AD = CB (opposite sides of a parallelogram)

 $\angle D = \angle B$ (opposite angles of a parallelogram)

DQ = BP (construction)

 $\therefore \triangle ADQ \equiv \triangle CBP \text{ (SAS)}$

$$\therefore AQ = PC$$

:. APCQ is a parallelogram (opposite sides are equal in length)

10

To prove:

APCQ is a parallelogram.

The diagonals of a parallelogram bisect each other.

 $\therefore XO = OZ$ and WO = OY

 $\angle XOY = \angle WOZ$ and $\angle XOW = \angle YOZ$

 $\therefore \triangle XOY \equiv \triangle WOZ$ and $\triangle XOW \equiv \triangle YOZ$

 $\therefore XY = WZ$ and WX = ZY

: XYZW is a parallelogram (opposite sides of equal length)

11 A rhombus is defined as a parallelogram with a pair of adjacent sides equal in length. Therefore all the sides are equal in length. You should also prove that if a quadrilateral has all sides of equal length then it is a rhombus.

a

$$\triangle ABC \equiv \triangle ADC$$
 (SSS)

$$\therefore \angle BAC = \angle DAM$$

$$\therefore \triangle ABM \equiv \triangle ADM \text{ (SAS)}$$

$$\therefore \angle BMA = \angle DMA = 90^{\circ}$$

(equal and supplementary)

b Refer to the diagram for a

$$\triangle ABC \equiv \triangle ADC$$
 (SSS)

$$\therefore \angle BAC = \angle DAM$$

Similarly for the other vertex angles

C

In $\triangle ABM$ and $\triangle CDM$

AM = MC (diagonals bisect each other)

MM = DM (diagonals bisect each other)

 $\angle BMA = \angle CMD = 90^{\circ}$ (diagonals are perpendicular)

 $\therefore \triangle ABM \equiv \triangle CDM(SAS)$

 $\therefore AB = CD \text{ and } \angle MCD = \angle MAB$

 $\therefore AB \parallel DC$ (alternate angles equal)

Similarly BC = AD and $BC \parallel AD$

Finally $\triangle ABM \equiv \triangle CDM(SAS)$

Hence AB = AD

We note that a shorter proof is available but we have proven several properties of rhombuses on the way through.

12a

$$\triangle ABC \equiv \triangle DCB \text{ (SAS)}$$

$$\therefore AC = BD.$$

ABCD is a rectangle and therefore a parallelogram

: diagonals bisect each other

b If a parallelogram has one right angle then:

the opposite angle is a right angle (opposite angles equal in a parallelogram). the cointerior angles are right angles.

Let ${\it M}$ be the pont of intersection of the diagonals.

$$\triangle AMD \equiv \triangle BMC(SAS)$$

$$\triangle AMB \equiv \triangle DMC(SAS)$$

All of these triangles are isosceles

$$\therefore \angle BAM = \angle DCM$$

$$\therefore AB \parallel DC$$

$$\mathbf{Similarly} AD \parallel BC$$

$$\angle A = \angle B = \angle C = \angle D$$

Therefore all right angles. Hence ABCD is a rectangle.

13

C

$$\triangle ABC \equiv \triangle AED$$
 (SSS)

$$\therefore \angle ABC = \angle AED$$

14

15

$$\triangle ABD \equiv \triangle CBD$$
 (SSS)

$$\therefore \angle ABD = \angle CBD$$

$$\therefore \triangle ABK \equiv \triangle CBK \text{ (SAS)}$$

$$AK = CK$$

16 $\angle C = \angle A + \angle B$ implies that $\angle C = 90^{\circ}$.

 $\triangle ABC$ is a right-angled triangle.

Choose point D to complete the rectangle ABCD.

The rectangle has diagonals AB and CD which are of equal length and bisect each other.

Let M be the midpoint of AB.

Then AB = 2CM.

17 Let
$$\angle MNO = \angle MON = x^{\circ}$$

Then
$$\angle ANO = (90-x)^\circ$$
 and $\angle NMO = (180-2x)^\circ$

18

M is the midpoint of BC.

BG and CF are perpendicular to the median AM extended

$$\triangle BMG \equiv \triangle CMF \text{ (ASA)}$$

$$\therefore BG = CF$$